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We model the behaviour of isolated sources of finite radius and volume flux which
experience a sudden drop in buoyancy flux, generalizing the previous theory presented
in Scase et al. (J. Fluid Mech., vol. 563, 2006, p. 443). In particular, we consider
the problem of the source of an established plume suddenly increasing in area
to provide a much wider plume source. Our calculations predict that, while our
model remains applicable, the plume never fully pinches off into individual rising
thermals.

We report the results of a large number of experiments, which provide an ensemble
to compare to theoretical predictions. We find that provided the source conditions
are weakened in such a way that the well-known entrainment assumption remains
valid, the established plume is not observed to pinch off into individual thermals.
Further, not only is pinch-off not observed in the ensemble of experiments, it cannot
be observed in any of the individual experiments. We consider both the temporal
evolution of the plume profile and a concentration of passive tracer, and show that
our model predictions compare well with our experimental observations.

1. Introduction
Turbulent plumes and jets arise in a wide range of geophysical and industrial

contexts. Recently (Scase et al. 2006b, herein referred to as S06b) we developed a
generalized time-dependent model (based on the famous Morton, Taylor & Turner
1956 model) to consider such flows. It was predicted that, whilst the model remained
valid, plumes could not be made to separate into individual thermals by a reduction
in the driving-source strength. The developed time-dependent model was found to
support a separable power-law solution which is realized when the driving-source
strength of the plume or jet is significantly reduced. This separable power-law solution
predicts a narrowing of the plume radius, but not total pinch-off, and the solution is
closely related to a solution originally presented by Batchelor (1954) as a model for
convective plumes in an unstably stratified ambient fluid. The flow may be considered
to consist of three regions. Far from the source, the plume behaves as a classical
plume with the original source buoyancy flux. Conversely, near the source, the plume
behaves as a classical plume with the final, new, source buoyancy flux. The plume
approaches the separable power-law solution in the intermediate region connecting
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these two classical plume structures. In this paper, we present experimental verification
of this core prediction.

The solutions to the time-dependent model presented in S06b and Scase, Caulfield &
Dalziel (2006a) (herein referred to as S06a) concentrated on point-source plumes in
pure plume balance in unstratified and stratified background fluids, respectively.
We demonstrate in the present paper that in fact neither of these constraints (that
the plume has a point source, or the plume is in pure plume balance), is essential
for realizing the separable solutions found in S06b for an unstratified background
fluid. It is the reduction in source strength which is the key requirement of the
model. We investigate briefly a case with relevance to geophysical and industrial
applications in which the size of the source of the plume expands catastrophically
at some time. Examples of when such behaviour might be expected include volcanic
eruptions and devastating releases of toxic buoyant jets at industrial plants. We find
again that, provided this expansion of the source results in a weaker buoyancy flux,
the separable solutions identified in S06b are realized, and the general behaviour
remains.

We present here experiments that are complementary to the theory developed in
S06b. We conducted a total of 100 nominally identical experiments to provide an
ensemble for comparison with the theory and we found good agreement. In previous
experimental studies of plumes with statistically steady source conditions (as recently
collated and compared in Carazzo, Kaminski & Tait 2006) a simple time average
of the experiment can typically be used as the ‘ensemble’ of the turbulent plume.
In the present study, due to the time-dependent nature of the source conditions, a
true ensemble over separate realizations of nominally identical experiments must be
used. This, allied with the inherent time dependence of the flow, introduces some
extra practical difficulties compared to previous studies. Methods for dealing with
these difficulties, in particular the synchronization of the individual experiments, are
discussed later in § 4.

The layout of the present paper is as follows. In § 2 we establish the mathematical
notation used to describe the problem. The notation is similar to that used in S06b,
S06a and Scase et al. (2006c, 2007). In § 3 we investigate the problem of non-ideal
plumes that undergo rapid reductions in their source strength in preparation for
comparison with experiment. We also consider variations in source radius, which
are of course possible when the source has non-zero volume flux (we define non-
ideal plumes as plumes with non-zero source volume flux). In § 4 we discuss the
experimental arrangement used and then in § 5 we conduct an analysis of our results.
Finally in § 6 we draw our conclusions.

2. Theoretical nomenclature
As in S06b and S06a we assume a top-hat distribution of both density and

vertical velocity throughout our theoretical modelling. Throughout we denote
dimensional quantities as ·� where · denotes the corresponding non-dimensional
quantity.

The density of the plume fluid is a function of both space and time and is denoted
ρ�(z�, t�). We assume that the ambient fluid is unstratified, and so its density is a
constant, denoted by ρ∞�. The vertical velocity of the plume and the plume radius,
like the density, are functions of both space and time and are denoted w�(z�, t�) and
b�(z�, t�), respectively.
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Following Morton et al. (1956), we define a true mass flux, true momentum flux
and true buoyancy flux, respectively, as

Q� =

∫ 2π

0

∫ ∞

0

w�ρ� r�dr�dθ = πb2
�w�ρ�, (2.1a)

M� =

∫ 2π

0

∫ ∞

0

w2
�ρ� r�dr�dθ = πb2

�w
2
�ρ�, (2.1b)

F� =

∫ 2π

0

∫ ∞

0

w�g� (ρ∞� − ρ�) r�dr�dθ = πb2
�w�g� (ρ∞� − ρ�) , (2.1c)

where g� is the acceleration due to gravity. There is a factor of π difference between
the present definitions of Q�, M� and F� and those used in S06b and S06a. This factor
has been introduced to avoid confusion with directly measured experimental fluxes in
the present paper. We make the Boussinesq approximation and assume the standard
entrainment assumption of Morton et al. (1956) such that ue� = −αw�, where ue� is
the (horizontal) velocity of the ambient fluid being entrained into the plume at the
plume boundary (see figure 1 of S06b). Note that we make the simplifying assumption
that we may use a constant value of α, meaning that we assume the value of α is
the same whether we are considering a plume or a jet, or something in between.
Although a constant α is thought not to be exactly true in practice (see Kaminski,
Tait & Carazzo 2005 for a full discussion), we believe that this simplifying assumption
does not change the fundamental aspects of the time-dependent system considered
here.

We introduce the following non-dimensional quantities based on an arbitrary
dimensional length scale z��, such that z� = z��z, and the buoyancy flux scale F0�, such
that

Q� = (4α2πρ∞�)
2/3F

1/3
0� z

5/3
�� Q, M� = (4α2πρ∞�)

1/3F
2/3
0� z

4/3
�� M, (2.2 a,b)

F� = F0�F, t� =
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4α2πρ∞�

)1/3
F

−1/3
0� z

4/3
�� t. (2.2 c,d)

Non-dimensional and dimensional plume radius, plume velocity and reduced gravity
can be expressed in terms of the non-dimensional bulk fluxes as

b =
b�

2αz��

=
Q

M1/2
, (2.3a)
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z
5/3
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F

Q
. (2.3c)

Under this non-dimensionalization, the system of equations governing the spatio-
temporal evolution of a plume in an unstratified ambient background fluid is given
by (S06b)

∂
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= 0. (2.4c)
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It should be noted that there is no dependence on the length scale z�� in the system
(2.4). This can be viewed as being a result of the self-similarity of the system, in
particular the dependence of the time scale on the length scale z��.

In order for a plume to be considered a ‘pure’ plume, the mass flux, momentum
flux and buoyancy flux must be exactly balanced at all heights in the plume such that
the non-dimensional quantity

Γ =
5

4

Q2F

M5/2
, (2.5)

(originally defined by Morton 1959) defined in terms of the non-dimensional fluxes,
is exactly equal to unity. We may expect that in any real flow there will be some
deviation from this value at all finite heights and therefore the plume will not be
a pure plume. These types of plumes were first considered by Morton (1959) and
more recently by Caulfield (1991) and Hunt & Kaye (2001), for example. A plume
originating from a physical, non-point, source (i.e. one distributed source over a
finite area) typically has a deficiency of momentum compared to an ideal plume.
Such a plume is referred to as ‘lazy’ and has Γ > 1 (cf. (2.5)). A forced plume
(equivalently a buoyant jet) may have an excess of momentum compared to a pure
plume and (2.5) demonstrates that such a plume has an associated value of Γ < 1.
Finally, a ‘point-source’ plume has a source of zero radius, and hence zero source
volume flux. Experimentally, if the buoyancy of the flow is caused by variations
in salinity, it is necessary to have sources with non-zero volume flux (and hence
radius). We refer to plumes rising from such sources as being ‘non-ideal’; of course
such finite-source volume flux flows are also relevant in geophysical and industrial
situations.

3. Modelling for direct comparison with experiment
We attempted to conduct experiments which exactly complement the theory

presented in S06b, specifically through maintaining pure plume balance at all times.
We used two different plume-source fluids, of differing density. We were able to
establish a strong steady pure plume with an initial very-buoyant fluid and then
swapped the source fluid to a new lower-buoyancy fluid, whilst maintaining pure
plume balance. However, due to the finite volume of the turbulent plume nozzle
employed (see § 4 for a description) and the very low flow rates through it, we
found that the new less-buoyant fluid mixed with the old more-buoyant fluid, before
entering the main experimental tank, over periods far greater than the time (∼10 s)
for a buoyant parcel of fluid to leave the nozzle and reach the top of the tank. So,
regardless of how swiftly the source fluids were changed, the buoyancy flux at the
source changed over a time scale that was too long for the expected transition in the
plume to be observed. The only way to change the buoyancy flux rapidly enough, in
the present arrangement, was to change the flow rate of the plume fluid, keeping its
density constant, which in turn meant preserving a pure plume balance throughout
the experiment was impossible. However, as shown below, this does not change the
fundamental character of the flow.

3.1. Non-ideal source conditions

As was shown in S06b for an unstratified ambient fluid, there exists a separable power-
law solution to (2.4) that is stable to small perturbations travelling with the local
plume velocity. Numerical experiments verified that this was indeed the case for ideal
plume-source conditions. However, the separable power-law solutions, specifically
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(cf. S06b, (3.11))
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t3
, (3.1)

have no dependence on the boundary conditions at the source. Hence, we may expect
this stable separable solution to be realized whenever the driving-source conditions
of an arbitrary non-ideal plume are reduced sufficiently.

It has been established that plumes with non-ideal source conditions at large
distances from their source have profiles asymptotically given by b = 3(z+ze)/5 (within
our non-dimensionalization), where ze is known as the virtual origin correction (see
e.g. Morton 1959, Caulfield 1991, Caulfield & Woods 1995, Hunt & Kaye 2001). At
large distances, the plume appears to come from a pure plume point source situated
some distance away from the actual source.

In S06b it was shown that when the driving fluxes of a pure point-source plume
were reduced, maintaining a pure point-source plume balance throughout, there exists
a finite connecting region in the plume the fluxes of which are well described by the
separable solutions (3.1). However, given the need for virtual origin corrections when
dealing with steady plumes with non-ideal source conditions, it might be expected
that a similar virtual origin correction would be needed for the narrowing connecting
region. As observed above however, since the solutions (3.1) contain no information
about the source conditions, we should expect this narrowing region not to be
affected by mismatches in the source conditions and therefore not require any virtual
origin correction, even though the location of the source is important through the z

dependence of (3.1).
Figure 1(a) demonstrates that the separable solutions in (3.1) require no virtual

origin correction to be made when applying them to the decreasing source strength
problem. The plume-source radius is fixed as b(0, t) = 1 throughout. The initial state
of the system is taken to be a steady plume. The initial non-dimensional buoyancy flux
at the source is F (0, 0) = 1, while the initial mass and momentum fluxes at the source
are chosen to yield a forced plume with Γ (0, 0) = 10−2. The initial forced plume profile
is shown as a thin solid line. Since the plume is forced, its profile lies outside that of
a pure plume, b =3z/5, shown as a dashed line. (Within this non-dimensionalization,
a steady point source of momentum alone – i.e. a pure jet – would have a profile
b = z, assuming that the entrainment constant can be considered identical for both
plumes and jets, and is therefore independent of Γ .) At t = 0, the source conditions
are changed to new steady values so that the plume radius at the origin remains at
b(0, t) = 1, but we make the plume lazy by increasing Γ so that Γ (0, t > 0) = 102, and
we reduce the driving buoyancy flux so that F (0, t > 0) = 10−2.

For t > 0 we have new steady lazy source conditions and so we expect the plume to
establish itself as a new steady lazy plume based on the new source conditions. The
lazy plume profile supported by the new source conditions is shown with a dotted
line and it can be seen that at t = 2.38 the plume profile (shown as a thick solid line
in figure 1a) lies on top of the anticipated new steady lazy plume profile (shown as
a dotted line) near the source (z < 0.5). The information about the changes in source
conditions has not yet fully propagated up the shown plume profile, so the upper part
of the plume still lies on the initial forced plume profile plotted with a thin solid line.
For 0.5 � z � 4 we see a narrower region, connecting the upper and lower parts
of the plume, which is well described by the separable solution (3.1) that predicts
b = z/3.
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Figure 1. (a) A numerical solution of (2.4) showing the profile of the steady initial forced
plume (plotted with a thin solid line), the final lazy profile (bold dashed line) and the observed
plume shape at an intermediate non-dimensional time t = 2.38 (bold solid line). The classical
steady pure-plume solution is shown with a thin dashed line and the predicted minimum width
b = z/3 with a dot-dashed line. Initially, the plume has a laziness parameter Γ = 10−2 making
it strongly forced; at t = 0 the laziness parameter is increased to Γ =102 making the plume
very lazy. The source radius is maintained at b(0, t) = 1 and the buoyancy flux is reduced from
F = 1 to F = 10−2. (b) The same conditions and line types were used as for figure 1(a) except
that for t > 0, the source size was increased from its initial value, b (0, 0) = 1, to b (0, t) = 3.
This again shows the plume narrowing to b = z/3.

As can be seen, even though there has been a large mismatch in the source
conditions resulting in strongly forced and strongly lazy plumes from a distributed
(i.e. not a point) source, the transient connecting region still agrees closely with
the separable solutions (3.1). The required virtual origin corrections for the initial
forced plume and final lazy plume shown are zvs = 9.33, and zvs = 0.57, respectively.
For comparison, a pure plume with this initial source radius would have zvs = 5/3.
(These initial and final states can be equivalently thought of as rising from distributed
sources of buoyancy alone with source radius bvs = 5.60 and bvs = 0.34, respectively.)
The requirement for a virtual origin correction is not observed in the narrow matching
region. (A brief derivation of the calculation for virtual origin corrections for forced
plumes with Γ < 1/2 is given in the Appendix.)

From these calculations, we see once again that it is extremely difficult to break an
established plume into thermals by reductions in the source strength alone.

3.2. The source area expansion problem

We have established in S06b the required mathematical tools with which to deal with
the geophysically and industrially relevant case of a plume-source area increasing,
for example during a volcanic explosion or industrial accident (the case of the plume
source shrinking can be treated in much the same way, but has not been considered
here).

Figure 1(b) shows the predicted top-hat plume profile for a plume whose source
area increases after the initial plume has been established. Initially, the plume has a
distributed source such that b(0, 0) = 1. The initial buoyancy flux is F (0, 0) = 1, and
the mass and momentum fluxes have been chosen such that Γ (0, 0) = 10−2, a forced
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plume, as in figure 1(a). For t > 0, the size of the source is increased from b(0, 0) = 1
to b(0, t) = 3. Simultaneously, Γ is increased from Γ (0, 0) = 10−2 to Γ (0, t) = 102

changing the plume from forced to lazy, and the source buoyancy flux is reduced
from F (0, 0) = 1 to F (0, t) = 10−2.

The thick solid line in figure 1(b) shows the plume profile at a non-dimensional
time t = 2.38 after the changes in source condition have been made. After a long
time we expect the source to establish a new steady plume based on these new source
conditions. This steady lazy plume profile is shown as a dotted line. It can be seen
that near the source (z < 0.2), the plume is beginning to establish this new steady
plume, since the thick solid line lies on top of the dotted line. We observe that even
though the area of the source has been increased by approximately an order of
magnitude, the transient connecting region of the plume still narrows and is in good
agreement with the z/3 plume profile predicted by the separable solutions in (3.1).
In particular, although very strongly narrowed, the plume does not pinch-off into
individual thermals.

It should be noted here that the derivation of the system of equations (2.4),
as in the steady model of Morton et al. (1956), required the assumption that the
plume was ‘thin’ with the length scale of vertical changes in properties being large
compared with the plume width, in order for terms involving the pressure field
to be ignored. This assumption is violated in the source-rupture problem and it
is not clear that it is necessarily valid for any distributed source plume (see e.g.
Caulfield 1991, Caulfield & Woods 1995, Hunt & Kaye 2001) or indeed any non-
Boussinesq plume (see e.g. Woods 1997). However, these models have proved useful
for distributed-source lazy plumes and non-Boussinesq plumes and so we may expect
predictions about such source-rupture problems to be useful, but caution should be
exercised.

3.3. Evolution of passive tracer fields

For direct comparison with experimental measurements it is convenient to make
predictions for the evolution of a passive tracer based on the model equations (2.4).
We add a fourth equation to the system (2.4) for a fourth unknown, the passive
tracer concentration. We define a pointwise passive tracer concentration c�(r�, z�, t�)
(i.e. c�(r�, z�, t�) is zero for r� > b� and is independent of r� for r� < b�; as before, stars
denote dimensional quantities) and define a pointwise non-dimensional passive tracer
concentration such that c� = c0�c, where c0� is a reference concentration, taken to be
the passive tracer concentration within the plume at z� =0, t� = 0. In the absence of
any tracer in the ambient fluid, the evolution equation for the passive tracer is given
dimensionally by

∂c�

∂t�
+ ∇ · (c�u�) = 0. (3.2)

Following the method of derivation described in S06b, a pointwise non-dimensional
top-hat concentration distribution satisfies

∂

∂t

(
Q2c

M

)
+

∂

∂z
(Qc) = 0; (3.3)

note the relation to (2.4c) when c is replaced by F/Q = g′. Thus, it immediately
follows that in a steady plume c�/c0� = g′

�/g
′
0�. This may be expected since c indicates

how diluted that initial plume fluid is with non-buoyant ambient fluid. There are
two advantages to defining a separate concentration equation, however. Firstly, the
concentration equation (3.3) remains valid when the ambient fluid is stratified, whereas
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Mixing valve

Figure 2. Schematic representation of the experimental set-up. Two constant head tanks
containing identical fluid, (which is buoyant compared to the ambient fluid in the tank) are
connected via two flow meters to a mixing valve. This mixing valve controls the flow from the
two header tanks to the plume nozzle underneath the experimental tank.

the simple relationship c ∝ g′ does not, since the right-hand side of (2.4c) becomes
non-zero (see (2.16c) in S06b), but the right-hand side of (3.3) remains zero. Secondly,
and relevantly in the present context, the concentration strength at the source, c(0, t),
can be kept constant, while changing the reduced gravity at the source, g′(0, t). This
means, experimentally, that a strong plume which is significantly weakened at a given
time does not introduce a necessary large reduction in the light levels.

4. Experimental setup
4.1. Experimental arrangement

A schematic representation of the experimental setup used is shown in figure 2.
Two identical constant-head tanks were arranged above the main experimental tank
which had dimensions 0.70 m × 0.70 m × 1.32 m. The constant-head tanks comprised
an inner feeder section and an outer overflow section, with fluid constantly pumped
from the overflow section into the feeder section at a rate faster than the rate of
draining from the feeder section. This ensured that the volume of fluid in the feeder
section remained approximately constant, even though fluid was being continuously
drained. Each constant-head tank contained identical fluid, fresh water, which was
buoyant compared to the brine used for the ambient fluid in the main experimental
tank. The constant-head tanks were connected via needle valves, to control the flow
rate, through two flow meters and then to a mixing valve. The needle valves were
used to set the maximum flow rate of buoyant fluid from each constant head tank to
the mixing valve. The mixing valve adjusted the flow rate from each constant head
tank into the turbulent plume nozzle.
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The plume nozzle† was designed to create a fully turbulent plume. Fluid entered
the base of the nozzle through a small ‘pin-hole’ into an expansion chamber
which triggered the turbulence transition. The turbulent fluid then passed through
a constriction into the main experimental tank which contained the stationary,
homogeneous ambient fluid. The main experimental tank had an overflow at the
top meaning that buoyant plume fluid which reached the top of the tank could
overflow, keeping the amount of fluid in the main experimental tank constant. This
overflow also reduced, but did not eliminate, difficulties associated with the ‘filling-box’
phenomenon (Baines & Turner 1969) and the circulation in the tank that ensues.

The experiment was lit from the side using a vertically aligned arrangement of
two 300 W Cermax xenon arc lamps fitted with parabolic dichroic reflectors which
produced a pair of well-collimated (and relatively cool) beams. The side of the
experimental tank was masked off allowing only a thin (∼1 mm) light sheet to pass
through the centre of the tank. The plume fluid was marked with fluorescein dye as
a passive tracer (see Wong, Griffiths & Hughes 2001 for a more detailed discussion).
Video sequences of the experiment were obtained at 24 frames per second using a
JAI CVM4+CL digital video camera and were recorded directly to hard disk for
subsequent post-processing using DigiFlow (Dalziel 2006). An image of a grid of
known mesh size was captured allowing real-world measurements to be taken from
the digital video.

The flow rate was measured using two rotameters (Omega FLR1007 series) accurate
to ±2% over the maximum range of the flow meter. For the present experiments the
errors are of the order of 1% corresponding to an error in the measured volume flux
of approximately 2 × 10−8 m3 s−1. The densities of the plume and ambient fluid were
measured using an oscillating U-tube density meter (Anton Paar DMA 5000). The
approximate errors in these density measurements were smaller than 0.01%.

4.2. Experimental technique and analysis

We started an individual experiment by putting the mixing valve in a position such
that both header tanks could feed the plume and with the timing light-emitting diodes
(LEDs) in the initial configuration. We opened the tap below the nozzle, creating a
strong plume within the experimental tank. This plume was allowed to establish itself,
typically over times greater than 30 s. We then started the recording process, capturing
approximately 10 s of this initial plume. At t = 0 we switched the mixing valve so
that only one of the two constant-head tanks could feed the nozzle, but the flow rate
from that constant-head tank remained unchanged since the pressure drop across the
needle valves was much higher than the pressure drop through the nozzle or along the
pipes. Switching the mixing valve over caused the flow rate from the other constant-
head tank to be quickly reduced to zero (approximately 0.2 s). Switching the mixing
valve over also caused the timing LEDs to change over, allowing synchronization
of all individual movies to create the ensemble. Approximately 20 s after the mixing
valve was switched over we stopped the recording process. It was found that after
approximately 8–10 individual experiments the main experimental tank needed to be
drained and refilled due to the buildup of tracer.

We took an initial movie of the experimental tank before a plume was created.
We time-averaged this movie and thus obtained a good measure of the low-level

† The turbulent plume nozzle was originally conceived by Dr Paul Cooper of the Faculty of
Engineering, University of Wollongong, NSW, Australia. A full description can be found in Hunt &
Linden (2001).
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General experimental values Non-dimensional initial and final values
Plume nozzle diameter �� = 2.9 × 10−3 m Mass flux Q0 = 11.77 Q1 = 2.40
Plume fluid density ρ�(0, t) = 999 kgm−3 Momentum flux M0 = 15.23 M1 = 0.64
Ambient fluid density ρ∞� = 1180 kgm−3 Buoyancy flux F0 = 1.00 F1 = 0.20
Mixing valve turnover ta� = 0.208 s Laziness Γ0 = 0.19 Γ1 = 4.57

Reynolds number R0 = 858 R1 = 175

Dimensional experimental values
Mass flux Q0� = 2.312 × 10−3 kg s−1 Q1� = 4.721 × 10−4 kg s−1

Momentum flux M0� = 6.838 × 10−4 kgm s−2 M1� = 2.852 × 10−5 kgm s−2

Buoyancy flux F0� = 3.540 × 10−3 kgm s−3 F1� = 7.228 × 10−4 kgm s−3

Table 1. The experimental values used in the experiments of § 5.1 and § 5.2. A subscript 0
indicates the initial value and a subscript 1 denotes the final value after the mixing valve has
been switched over.

background light intensity. We subtracted this averaged image from all the
experimental movies captured. The exact distribution of the light-sheet intensity
created by the two arc lamps was extremely difficult to measure a priori. Therefore,
we time-averaged the initial centreline light intensity of the ensemble ‘steady plume’
over the first 10 s before the mixing valve was switched over. We then divided this
time-average by the theoretical prediction for the steady tracer distribution of the
passive tracer (c ∝ g′), generating a constant time-independent one-dimensional data
array. We then divided all the individual experimental images by this scaled data
array to remove the (unknown) effect of the light-sheet spatial variation. This scaled
data array is the only ‘tuning parameter’. Where we have removed small-scale noise
it has been carried out using a low-pass filter in the spatial and temporal directions
with cutoff scales 0.02 m and 0.85 s, respectively.

5. Experimental analysis
We begin in § 5.1 by discussing the behaviour of an individual realization before

discussing in § 5.2 the behaviour of our ensemble comprising 100 nominally identical
realizations.

5.1. An individual realization

Figure 3 shows a single realization at three separate times. The experimental values
are shown in table 1. Figure 3(a) shows the initial statistically steady forced plume.
The plume has a high Reynolds number (R =858 at the source), and is well described
by the steady plume theory of Morton et al. (1956). This image was taken 4.08 s
before the mixing valve was switched over. Figure 3(b) shows the plume 4.17 s after
the mixing valve has been switched over. Switching the mixing valve over reduces
all three of the driving source fluxes and changes the plume from being forced,
with laziness parameter Γ = 0.19, to being lazy with Γ = 4.57 (where a value of α

is required for non-dimensionalization or otherwise we employ the commonly used
value of the entrainment constant for plumes, α =0.083). This reduction in source
strength causes a narrowing section to propagate up the plume and can be seen in
figure 3(b), indicated on the right-hand side of image, with the narrowest section at
approximately z� = 0.23 m. During these experiments the plume remained connected
together as a single plume at all times. Figure 3(c) shows the re-established steady
plume, now with weaker source conditions.
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Figure 3. Individual realizations of: (a) the initial established steady strong plume at
t� = −4.08 s; (b) the plume showing a transient necking region (b) at t� = 4.17 s; and (c)
the newly established weaker plume at t� = 16.33 s. The small white circle in the bottom right
of (b) and (c) is the (upper) timing LED used to synchronize the experiments. Part (b) shows
that a transient signal passes up the plume (indicated on the right of the image), causing the
plume width to narrow (near z� ≈ 0.23 m), but does not allow the plume to pinch-off into
two separate structures. The approximate bounds for the transient region are calculated with
(5.1a–b).

In figure 3(b, c) (and later in figure 4), a small region extending from z� = 0 m to
z� =0.025 m exists, where the expected conical shape of the plume is not observed.
This is due to the low final Reynolds number at the nozzle, employed to try to make
pinch-off as likely as possible. However, as was shown in § 3, this small region near the
nozzle, far removed from the transitional region, can be accounted for by a virtual
origin correction if desired. Use of a virtual origin correction in no way changes
our prediction that the transitional region will realize a b = z/3 profile and so for
simplicity we have not done so.

5.2. An ensemble of realizations

Figure 4 shows images averaged across our ensemble of 100 nominally identical
experiments at times corresponding to the images shown in figure 3. As the mixing
valve is switched over in a given experiment, the timing LEDs change, from a lower
LED (not visible in the images of figures 3 and 4 due to cropping) being on and an
upper LED being off to a lower LED being off and an upper LED being on (shown
in figures 3b, c and 4b, c). The intermediate time, as the valve is being switched over,
during which both LEDs are briefly off (∼0.04 s) is used to synchronize the individual
movies in order to make the ensemble. The images shown have not been filtered,
but the unknown spatial distribution of the light sheet has been scaled out using the
technique described above in § 4.2.
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Figure 4. Ensemble realizations of: (a) the initial established steady strong plume at
t� = −4.08 s; (b) the plume showing a transient necking region at t� = 4.17 s; and (c) the
newly established weaker plume at t� =16.33 s. The small white circle in the bottom right of
(b) and (c) is the (upper) timing LED used to synchronize the experiments. Part (b) shows that
a transient signal (indicated as in figure 3b) passes up the plume, causing the plume width
to narrow, but does not allow the plume to pinch off into two separate structures. The white
arrows in the left of (b) correspond to the heights used in figure 5.

Figure 4(a) shows the ensemble of all the experimental plumes at a time t� = −4.08 s,
before the mixing valve is switched over. This is an ensemble of the strong initial
forced plumes. Figure 4(b) shows the ensemble over the individual experiments at a
time t� = 4.17 s, after the mixing valve has been switched over. The darker region at
0.2m � z� � 0.3m is the transient signal propagating up the plume. Interpreted as a
top-hat radius (see § 5.3), this darker region corresponds to the predicted narrowing
of the plume radius. Figure 4(c) corresponds to the ensemble over the individual
experiments at a time t� = 16.33 s, well after the mixing valve has been switched over.
This is now effectively a new statistically steady plume based on the new weaker
source conditions. It can be seen that the overall concentration of passive tracer is
less than that in the initial plume shown in figure 4(a).

5.3. Analysis of the ensemble

Figure 5 demonstrates that the modelling assumption of self-similarity in the cross-
plume profiles throughout a plume undergoing temporal changes is valid. This
self-similarity was simply assumed in the derivation of the model equations (2.4)
in S06b, but is strongly supported by this new experimental evidence. As can be
seen in figure 5, the normalized passive tracer concentration remains approximately
Gaussian across the transient narrowing region that propagates up the plume. The
specific image used for this calculation is figure 4(b). The Gaussian radius b and
concentration maximum cm� were calculated by taking logarithms of the concentration
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Figure 5. The plume maintains a self-similar approximately Gaussian tracer profile
throughout the transient region. The data points correspond to the normalized tracer
distribution at five different heights of the central image of figure 4. The solid black line
shows the Gaussian curve exp

{
−r2

}
.

field at a given height and best fitting a quadratic. The five equally spaced heights
chosen correspond to a height high up the plume (z� = 0.30m) which little information
about the source changes has reached, a height low down the plume (z� = 0.03m) at
which a new steady plume has begun to establish itself with the new steady source
conditions, and three intermediate heights through the transient region. All five chosen
heights are indicated by white arrows in figure 4(b).

For comparison with our theory, we need to recast the approximately Gaussian
observed plume profiles in our top-hat framework. This is achieved by first
adjusting for the light sheet in our concentration data and then calculating
the amplitude, a (z), and the standard deviation, σ (z), of the observed Gaussian
profile, so that the experimental concentration field is well approximated by
a(z) exp{−[r/σ (z)]2/2}. For a steady plume, adjusting for the light sheet would
mean that a(z) = 1. The best-fit Gaussian was found by taking the logarithm of
the profile and best fitting a quadratic curve. The total concentration at a given
height is therefore given by cT (z) =

√
2πa(z)σ (z). Since the equivalent top-hat radius

must have amplitude 1 everywhere by definition, the top-hat radius is given by
b(z) = cT (z)/1 =

√
2πa(z)σ (z).

Figure 6 shows the initial and transient interpreted top-hat plume radii corres-
ponding to figure 4(a, b). The classical steady plume profile of Morton et al. (1956)
is shown as the dashed line, while the narrower profile predicted by the solutions in
(3.1) is shown as the dot-dashed line. The initial plume profile is shown as the thin
solid line and agrees well with the classical solution of Morton et al. (1956). The thick
solid line is the plume t� = 4.17 s, after the source conditions have been weakened and
shows the narrower transient region propagating up the plume. The minimum plume
radius is well modelled by the solution predicted in (3.1). In particular we note that
the plume does not pinch-off into separate rising thermals.

The plot shown in figure 7 shows the evolution of the passive tracer field at three
separate times corresponding to the images in figures 3 and 4. The field c−3/5 has
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Figure 6. A plot of the interpreted top-hat plume radius from figure 4(b). The dashed line
shows the Morton et al. (1956) steady plume profile, and the narrower dot-dashed line shows
the predicted minimum plume width as given by (3.1). The thin solid line shows the initial
forced plume profile, and the thick solid line shows the plume profile with the transient
narrowing region at time t� = 4.17 s.
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Figure 7. A plot of the temporal evolution of the passive tracer concentration. The thin lines
are theoretical predictions based on solution of the system (2.4) together with the passive
tracer equation (3.3). The thin solid line shows the initial steady distribution of passive tracer,
the dashed line shows the final steady distribution of passive tracer. The dot-dashed line shows
the passive tracer with the transient signal propagating through it. The thick lines are the
equivalent experimental values: the solid line corresponds to t� = −4.08 s (i.e. figures 3a and
4a), the dashed line corresponds to t� = 16.33 s (i.e. figures 3c and 4c), and the dot-dashed
line corresponds to the intermediate time t� =4.17 s (i.e. figures 3b and 4b). The experimental
values have been scaled using the technique described in § 4.2 to remove the effect of spatial
variation in the light sheet, and have also been spatially and temporally filtered to remove
small scale noise.

been plotted so that all curves pass through (1, 0) and the theoretical distribution of
passive tracer from a pure plume would appear as a straight line with non-dimensional
gradient d

(
c−3/5

)
/dz =3/ (5b0).
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The thin lines show the theoretical predictions of the evolution of the passive tracer
based on solutions of the governing system of equations (2.4) and the passive tracer
evolution equation (3.3). The thin solid line shows the predicted initial distribution of
passive tracer, the thin dashed line shows the predicted final distribution and the thin
dot-dashed line shows the predicted distribution at the intermediate time, t� = 4.17 s,
after the source conditions have been changed. The thick lines are the experimental
measurements. As described in § 4.2, the experimental data have been filtered and the
unknown strength of the light sheet has been removed based on the expected initial
distribution of the passive tracer.

Figure 7 shows that there is good agreement between the theoretical predictions
for the initial and final distributions of the passive tracer. The experimentally
measured transient distribution (shown with a dot-dashed line) shows good qualitative
agreement with the theoretical prediction. The concentration of passive tracer at the
upper section of the plume remains unaffected by the change in source conditions.
The lower section of the plume has a concentration extremely close to the final
concentration. In the transient region we observe that the concentration of the passive
tracer does decrease to a value below that of the final distribution, although the exact
position of the top and bottom of the transient region is not as well predicted. It is
unsurprising that some sharpness is inevitably lost, compared to the model, in the
processes of scaling, filtering and combining to form ensembles, and the fact that the
plume contains eddies with some vertical extent which are not captured by the integral
top-hat modelling of S06b. This vertical extent of the eddies means that some vertical
homogenization is observed, due to their overturning and mixing, accounting for an
underprediction in the minimum concentration observed within the transitional region.

Figure 8 shows contours of constant-passive tracer concentration in the plume
against time. As in figure 7, the model predicts well the concentration of passive
tracer before and after the mixing valve has been switched over at t� = 0 s. The region
in which the transient signal propagates up the plume is also well predicted. As
derived in S06b, the upper limit of the intermediate transient adjustment region is at

z0� =

(
10

9α

)1/2 (
F0�

πρ∞�

)1/4

t3/4
� , (5.1a)

while the lower limit is at

z1� =

(
10

9α

)1/2 (
F1�

πρ∞�

)1/4

(t� − ta�)
3/4 , (5.1b)

where ta� is the dimensional turnover time of the mixing valve. The limits, z0� and z1�

are plotted on figure 8 as dot-dashed lines. The mixing valve turnover time ta� (listed
in table 1) was calculated by measuring the light intensity from both the LEDs in
the ensembled experiment. As the mixing valve was switched over the light intensity
associated with the LEDs dropped to zero as both LEDs were briefly off, and then
the light intensity increased again as the valve was moved into its final position. The
time ta� corresponds to the length of time during which the light intensity associated
with the LEDs was varying significantly.

There is also good qualitative agreement in the features of the concentration field
in the transient region. As in figure 7, the experiments do not show the sharp changes
that the theoretical curves do, partially as a result of the ensemble averaging and
filtering.
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Figure 8. A contour plot of lines of constant passive-tracer concentration, as labelled. The
solid lines are calculated from the governing system of equations (2.4) together with the
passive-tracer equation (3.3). The dashed lines are experimental and have been filtered using
the method described in § 4.2.

6. Conclusions
We have presented here, for the first time, experimental evidence of the behaviour

of plumes with time-dependent buoyancy flux, which strongly supports the theoretical
predictions made in S06b and S06a. The modelling and experiments were originally
motivated by the results of Hunt et al. (2003) and a desire to discover whether
established plumes could be made to pinch off into individual thermals by reducing
their driving-source buoyancy flux. Both our theoretical model and the experiments
presented herein indicate that, provided the source strength maintains a turbulent
plume throughout the changes in source conditions, and hence the entrainment
assumption is valid, an established plume does not break up by a reduction in its
source strength alone.

The theoretical model predicted that not only does the plume not pinch off, but it
narrows to a non-dimensional width given by z/3, or dimensionally 2αz�/3 (where α

is the entrainment constant), from its original steady width of 3z/5, or dimensionally
6αz�/5. Further theoretical investigation has shown that the separable solutions to
the governing equations present in S06b can be observed with general boundary
conditions, provided, as before, that the driving buoyancy flux is sufficiently reduced.
Our experiments indicate that a narrowing of the plume radius to z/3 is indeed a
reasonable prediction. In the present paper we have also introduced a fourth equation
to the governing system (2.4) which describes the evolution of a passive tracer within
the plume. We have good agreement between the model predictions of the passive-
tracer evolution and our experimental observations, particularly outside the transient
region. Inside this transient region we observe good qualitative agreement, but the
sharp changes in concentration predicted by the model were not observed as clearly,
probably due to the necessity of using ensemble averages.
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Finally we note that the theoretical predictions of S06a, namely that a plume rising
through a uniform stratification with buoyancy frequency N�, which is subject to a
reduction in its source strength, stalls in a time t� = π/N�, has not been tested herein.
However, preliminary results published in Scase et al. (2006c) indicate that this is
again a reasonable prediction, lending further credence to the belief that the predicted
time-dependent behaviour of solutions to the governing equations derived in S06a

are physically realizable.
In conclusion therefore, we find that plumes are remarkably robust and we speculate

that only in quite extreme (but still realizable and practical) conditions do they break
down into separate puffs.
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Appendix. Virtual-origin correction for forced plumes
Following Hunt & Kaye (2001), we present a new asymptotic expression for the

virtual-origin correction for a forced plume with laziness parameter Γ < 1/2. For
a given plume with unbalanced, non-ideal, source conditions it has been shown
(Caulfield 1991; Caulfield & Woods 1995) that in the far field, the plume’s properties
tend to the power-law solutions of point-source pure plumes. The origin of the
point-source pure plume which would match the far field of the non-ideal plume is
said to be situated at the ‘virtual origin’. Hunt & Kaye (2001) carefully examined the
location of the virtual origin for plumes that had steady source conditions which obey
Γ > 1/2. In the present investigation we wish to discuss the virtual-origin correction
not only for lazy plumes with Γ 	 1, but also for strongly forced plumes with Γ 
 1,
in particular Γ < 1/2, a problem first considered by Morton (1959).

We proceed as in Hunt & Kaye (2001) by considering the steady form (2.4).
We define normalized non-dimensional quantities q and m such that Q =Q0 q and
M = M0 m. It follows from (2.4a) and (2.4b) that

m1/2 = {(q2 − 1)Γ + 1}1/5 (A 1)

(see Hunt & Kaye 2001, (24)). Hence, it follows from (2.4a) that

z

b0

=

∫ q

1

1

{(q̃2 − 1)Γ + 1}1/5
dq̃. (A 2)

The expression in (A 2) can be rewritten as the following differential equation:

q2

(
q2 − Γ − 1

Γ

)
d2z

dq2
+

2q3

5

dz

dq
= 0, (A 3)

together with the boundary conditions z (1) = 0, dz (1) /dq = b0. The differential
equation in (A 3), together with the boundary conditions, is satisfied by

z

b0

=
q

(1 − Γ )1/5

{
2F1[ 1

5 , 1
2 ; 3

2 ]

(
q2Γ

Γ − 1

)
− 2F1[ 1

5 , 1
2 ; 3

2 ]

(
Γ

Γ − 1

)}
, (A 4)
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where 2F1 is the hypergeometric function. Using the asymptotic properties of the
hypergeometric function expanded about q → ∞ with Γ fixed for the upper limit,
and Γ → 0 (since 0 <Γ < 1/2) for the lower limit, it follows that

z

b0

=
5

3

q3/5

Γ 1/5
+ O(q−2/5) +

Γ (−3/10) Γ (3/2)

Γ (1/5)

(1 − Γ )3/10

Γ 1/2

− 1

(1 − Γ )1/5

∞∑
n=0

[
n−1∏
k=0

(1 + 5k)

]
(−1)n

5n (1 + 2n) n!

(
Γ

1 − Γ

)n

, (A 5)

where care must be taken not to confuse the laziness parameter Γ (defined in (2.5))
with the Gamma function Γ (x). The non-dimensional virtual origin correction is
therefore given by

zvs

b0

= −Γ (−3/10) Γ (3/2)

Γ (1/5)

(1 − Γ )3/10

Γ 1/2

+
1

(1 − Γ )1/5

∞∑
n=0

[
n−1∏
k=0

(1 + 5k)

]
(−1)n

5n (1 + 2n) n!

(
Γ

1 − Γ

)n

(A 6)

(cf. Hunt & Kaye 2001, (35)). To recover the dimensional virtual-origin correction the
non-dimensional virtual-origin correction must be multiplied by z� = b0�/ (2αb0).

It can be seen from the first few terms of the expansion for zvs given by

zvs

b0

∼ 10

3


(7/10)
(3/2)


(1/5)
Γ −1/2 + 1 − 
(7/10)
(3/2)


(1/5)
Γ 1/2 +

1

5
Γ + O(Γ 3/2), (A 7)

that as Γ → 0, the virtual-origin correction zvs → ∞. This is as expected since in the
limit Γ → 0, we have a pure jet, which exhibits different power-law behaviour to
a pure plume and so no virtual origin correction can be applied. The first term
of expansion (A 7) was given approximately in Morton (1959) (see his (7b)). The
numerical value given by Morton, 1.057, is the coefficient of the first term of the
present expansion (A 7) multiplied by 23/25−1/2 to account for the different choices in
non-dimensionalization, plume profile and definitions of Q, M and F .
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